## CYCLIZATION OF DIALKYL-(4-HYDROXY-2-BUTYNYL)(3-ALKENYL-PROPARGYL)AMMONIUM SALTS AND RECYCLIZATION OF THE 2,2-DIALKYL-4-HYDROXYMETHYLISOINDOLINIUM SALTS OBTAINED

## A. R. Gevorkyan<sup>1</sup>, E. O. Chukhadzhyan<sup>1</sup>, El. O. Chukhadzhyan<sup>1</sup>, and G. A. Panosyan<sup>2</sup>

2,2-Dialkyl-4-hydroxymethylisoindolinium chlorides, like benzisoindolinium salts, readily undergo intramolecular recyclization under conditions of aqueous alkaline decomposition, comprising fission of the isoindolinium ring and formation of a dihydrofuran ring leading to (1,3-dihydro-4-isobenzofuranylmethyl)dialkylamines.

**Keywords:** 4-hydroxy-2-butynyl group, dialkyl(3-alkenylpropargyl)-(4-hydroxybutyn-2-yl)ammonium salts, (1,3-dihydro-4-isobenzofuranylmethyl)dialkylamines, base catalysis, recyclization, cyclization.

Chloride and bromide salts of dialkyl(4-hydroxy-2-butynyl)(3-alkenylpropargyl)ammonium of type 1 and of -(3-phenylpropargyl)ammonium undergo intramolecular cyclization in the presence of catalytic amounts of aqueous alkali with the formation of 2,2-dialkyl-4-hydroxymethylisoindolinium salts 2 and -benz[f]iso-indolinium salts [1]. When studying the aqueous alkaline decomposition of 2,2-dialkyl-4-hydroxymethylbenz-



<sup>&</sup>lt;sup>1</sup> Institute of Organic Chemistry, National Academy of Sciences of the Armenian Republic, Erevan 375091; e-mail: hasulik4@mail.ru. <sup>2</sup> Centre for the Investigation of Molecular Structure, National Academy of Sciences of the Armenian Republic, Erevan 375014; e-mal: henry@msrc.am. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 212-217, February, 2004. Original article submitted November 12, 2003.

0009-3122/04/4002-0177©2004 Plenum Publishing Corporation

| Com-<br>pound | Empirical<br>formula               | Found, %<br>Calculated, % |                       |                      | Bp., °C<br>( <u>mm Hg.</u> )<br>mn °C | $n_{\rm D}^{\ \ 20}$ | Mp picrate,<br>°C (ethanol) | Mp hydrochloride,<br>°C (abs. ethanol) | IR spectrum, v, cm <sup>-1</sup>               | Yield,<br>% |
|---------------|------------------------------------|---------------------------|-----------------------|----------------------|---------------------------------------|----------------------|-----------------------------|----------------------------------------|------------------------------------------------|-------------|
|               |                                    | С                         | Н                     | N                    | mp, c                                 |                      |                             |                                        |                                                |             |
| 3a            | C <sub>13</sub> H <sub>19</sub> NO | <u>76.38</u><br>76.06     | <u>9.47</u><br>9.33   | <u>6.05</u><br>6.82  | 110 (2)                               | 1.5238               | 137                         | 140-141                                | 705, 760, 1050, 1200, 1550, 1600, 3030         | 61          |
| 3b            | $C_{14}H_{21}NO$                   | <u>76.97</u><br>76.67     | <u>9.02</u><br>9.65   | $\frac{6.60}{6.39}$  | 114 (2)                               | 1.5290               | *                           | *2                                     | 840, 1030-1070, 1200, 1590, 1600               | 64          |
| 3c            | C <sub>15</sub> H <sub>23</sub> NO | <u>77.56</u><br>77.21     | <u>9.83</u><br>9.93   | $\tfrac{6.25}{6.00}$ | 140 (1)                               | 1.5110               | 145-146                     | 152-154                                | 705, 770, 1050, 1200-1240, 1540, 1590, 3040    | 59          |
| 3d            | C <sub>17</sub> H <sub>27</sub> NO | <u>78.44</u><br>78.11     | $\frac{10.60}{10.41}$ | $\frac{5.07}{5.36}$  | 82 (1)                                | 1.5070               | *                           | *2                                     | 700, 770, 1050, 1200, 1550, 1600, 3040         | 60          |
| 3e            | $C_{13}H_{17}NO$                   | <u>77.10</u><br>76.81     | $\frac{8.68}{8.43}$   | $\frac{7.04}{6.89}$  | 107 (1)                               | 1.5440               | 155                         | 193                                    | 705, 770, 1050, 1200-1240, 1540, 1590,<br>3040 | 60          |
| 3f            | C <sub>14</sub> H <sub>19</sub> NO | <u>77.73</u><br>77.38     | <u>9.06</u><br>8.81   | $\frac{6.23}{6.45}$  | 127 (1)                               | 1.5410               | 186-187                     | 224-225                                | 700, 750-770, 1050, 1200, 1550, 1600, 3040     | 68          |
| 3g            | $C_{13}H_{17}NO_2$                 | <u>71.57</u><br>71.21     | <u>7.56</u><br>7.81   | <u>6.14</u><br>6.39  | <u>145 (2)</u><br>50-51               | —                    | 174-175                     | 194-195                                | 705, 760, 1050, 1200, 1550, 1590, 3050         | 69          |
|               |                                    |                           |                       |                      | (hexane)                              |                      | l                           |                                        |                                                |             |

TABLE 1. Physicochemical Characteristics and Yields of Amines 3a-g

\* No picrate formed. \*<sup>2</sup> Hygroscopic.

| Compound | Empirical                            |                       | Foun<br>Calcula       | ud, %<br>ated, %      |                     | Bp, °C (mm Hg) | $n_{\rm D}^{\ 20}$ | Mp hydrochloride,<br>°C (abs. ethanol) | Yield, % |
|----------|--------------------------------------|-----------------------|-----------------------|-----------------------|---------------------|----------------|--------------------|----------------------------------------|----------|
|          | IoIIIIula                            | С                     | Н                     | Cl                    | Ν                   |                |                    |                                        |          |
| 4c       | C <sub>11</sub> H <sub>19</sub> N    | $\frac{80.24}{79.94}$ | $\frac{11.84}{11.59}$ |                       | $\frac{8.26}{8.47}$ | 64-65 (3)      | 1.4662             | *2                                     | 58       |
| 4d       | $C_{13}H_{23}N$                      | $\frac{81.21}{80.76}$ | <u>12.29</u><br>11.99 |                       | <u>6.92</u><br>7.25 | 84 (3)         | 1.4690             | 83                                     | 55       |
| 4f       | $C_{10}H_{15}N$                      | $\frac{80.85}{80.48}$ | $\frac{10.36}{10.13}$ |                       | <u>9.70</u><br>9.39 | 83-85 (2)      | 1.5020             | 137-138                                | 58       |
| 1c       | C <sub>15</sub> H <sub>24</sub> ClNO | <u>67.02</u><br>66.77 | <u>9.12</u><br>8.97   | $\frac{13.48}{13.14}$ | <u>4.98</u><br>5.19 | *              |                    |                                        | ~100     |
| 1d       | C <sub>17</sub> H <sub>28</sub> ClNO | $\frac{68.75}{68.5}$  | <u>9.65</u><br>9.47   | $\frac{11.58}{11.90}$ | $\frac{4.96}{4.70}$ | *              |                    |                                        | ~100     |
| 1f       | C <sub>14</sub> H <sub>20</sub> ClNO | <u>66.51</u><br>66.26 | <u>8.14</u><br>7.94   | $\frac{13.62}{13.97}$ | <u>5.77</u><br>5.52 | *              |                    |                                        | ~100     |
| 1g       | $C_{13}H_{18}CINO_2$                 | $\frac{61.33}{61.05}$ | $\frac{7.30}{7.09}$   | $\frac{13.53}{13.86}$ | $\frac{5.50}{5.48}$ | *              |                    |                                        | ~100     |

TABLE 2. Physicochemical Characteristics of Amines 4c,d,f and Salts 1c,d,f,g

\* Salts 1c,d,f,g were honey-like. \*<sup>2</sup> Salts were hygroscopic.

TABLE 3. <sup>1</sup>H NMR Spectra of Amines **3a-g** in DMSO-d<sub>6</sub>+CCl<sub>4</sub>, δ, ppm, Coupling Constants (*J*, Hz)



| Compound | N–CH <sub>2</sub> , s | H <sub>2</sub> C–O–CH <sub>2</sub> ,t | H <sub>Ar</sub> , m | R                                                                                                                                                                                                                                      |
|----------|-----------------------|---------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3a       | 3.46                  | 4.97, 5.03, <i>J</i> = 2.2            | 7.05-7.15           | 1.01 (6H, t, $J = 7.2$ , 2CH <sub>3</sub> ); 2.45 (4H, q, $J = 7.2$ , 2CH <sub>2</sub> )                                                                                                                                               |
| 3c       | 3.44                  | 4.98, 5.02, <i>J</i> = 2.3            | 7.06-7.17           | 0.85 (6H, t, <i>J</i> = 7.3, 2CH <sub>3</sub> ); 1.45 (4H, m, 2CH <sub>3</sub> <u>CH<sub>2</sub></u> ); 2.32 (4H, t, <i>J</i> = 7.3, N(CH <sub>2</sub> ) <sub>2</sub> )                                                                |
| 3d       | 3.43                  | 4.99, 5.02, <i>J</i> = 2.3            | 7.05-7.17           | 0.87 (6H, t, $J = 7.2$ , 2CH <sub>3</sub> ); 1.27 (4H, m, 2CH <sub>3</sub> <u>CH<sub>2</sub></u> ); 1.41 (4H, m, 2CH <sub>3</sub> CH <sub>2</sub> <u>CH<sub>2</sub></u> ); 2.34 (4H, t, $J = 7.1$ , N(CH <sub>2</sub> ) <sub>2</sub> ) |
| 3e       | 3.52                  | 4.99, 5.02, <i>J</i> = 2.3            | 7.05-7.17           | 1.70-1.80 (4H, m, 2CH <sub>2</sub> ); 2.41-2.48 (4H, m, N(CH <sub>2</sub> ) <sub>2</sub> )                                                                                                                                             |
| 3f       | 3.36                  | 4.98, 5.03, <i>J</i> = 2.3            | 7.06-7.16           | 1.44 (2H, m, CH <sub>2</sub> ); 1.55 (4H, quintet, $J = 5.1$ , 2CH <sub>2</sub> ); 2.32 (4H, t, $J = 5.1$ , N(CH <sub>2</sub> ) <sub>2</sub> )                                                                                         |
| 3g       | 3.41                  | 5.00, 5.05, <i>J</i> = 2.2            | 7.05-7.20           | 2.36 (4H, m, N(CH <sub>2</sub> ) <sub>2</sub> ); 3.59 (4H, m, O(CH <sub>2</sub> ) <sub>2</sub> )                                                                                                                                       |

<sup>\* 1</sup>H NMR spectrum of amine **3b** (CDCl<sub>3</sub>), δ, ppm (*J*, Hz): 1.03 (6H, t, *J* = 7.2, 2CH<sub>3</sub>); 2.36 (3H, s, CH<sub>3</sub>); 2.48 (4H, q,  $J = 7.2, 2CH_2$ ); 3.45 (2H, s, NCH<sub>2</sub>); 5.08 (2H, br. s, OCH<sub>2</sub>); 5.14 (2H, br. s, OCH<sub>2</sub>); 6.92 and 7.01 (2H, br. s, H<sub>Ar</sub>). <sup>13</sup>C NMR spectrum of amine **3f** (DMSO-d<sub>6</sub>+CCl<sub>4</sub>), δ, ppm: 23.90 (CH<sub>2</sub>); 25.49 (2CH<sub>2</sub>); 53.90 [N(CH<sub>2</sub>)<sub>2</sub>]; 61.38 (NCH<sub>2</sub>); 72.04 (OCH<sub>2</sub>); 72.34 (OCH<sub>2</sub>); 118.76, 126.52, and 126.81 (3CH<sub>Ar</sub>); 132.41, 137.99, and 138.83 (3C<sub>Ar</sub>). <sup>13</sup>C NMR spectrum of amine **3g** (DMSO-d<sub>6</sub>+CCl<sub>4</sub>), δ, ppm: 52.98 [N(CH<sub>2</sub>)<sub>2</sub>]; 60.91 (NCH<sub>2</sub>); 65.94 [O(CH<sub>2</sub>)<sub>2</sub>]; 71.93 (OCH<sub>2</sub>); 72.31 (OCH<sub>2</sub>); 118.97, 126.49, and 126.92 (3CH<sub>Ar</sub>); 131.25, 137.99, and 138.86 (3C<sub>Ar</sub>). [*f*]isoindolinium chlorides and bromides it was discovered that intramolecular recyclization occurred [2]. With the aim of establishing the general nature of this reaction, the behavior of 2,2-dialkyl-4-hydroxymethyl-isoindolinium salts under conditions of aqueous alkaline decomposition has been studied in the present work.

Since salts **2a-g**, formed by the cyclization of dialkyl(4-hydroxy-2-butynyl)(3-alkenylpropargyl)ammonium salts **1a-g**, are not successfully obtained in the crystalline state, we studied their decomposition without isolating them.

The recyclization of salts **2a-g**, unlike the benzisoindolinium analogs, is effected on extended heating. The recyclization products, (1,3-dihydro-4-isobenzofuranylmethyl)dialkylamines **3a-g**, were obtained in 60-68% yield (Table 1). Based on the investigations carried out it may be said that the intramolecular recyclization detected by us in [2] has a general character and opens broad possibilities for making potentially bioactive amines containing a dihydrofuran ring. The hydrogenated furan ring is found in the composition of many natural alkaloids. Amines **3a-g** were also obtained in 5-10% yield on cyclization of salts **1a-g** under base catalyzed conditions.

In the IR spectra of the initial dialkyl(3-vinylpropargyl)amines 4c,d,f, synthesized for the first time, there were characteristic absorption bands for a doubly substituted acetylenic bond at 2220-2230, for  $-CH=CH_2$  at 920, 930, and a conjugated C=C bond at 1580-1610 cm<sup>-1</sup> (Table 2).

In the IR spectra of the initial salts 1c,d,f,g, which have been obtained for the first time, characteristic absorption bands were detected for a doubly substituted acetylenic bond at 2220, for a hydroxyl group at 1020 and 3200-3400, for  $-CH=CH_2$  at 920, 930, and also for a conjugated C=C bond at 1580-1610 cm<sup>-1</sup> (Table 2).

In the IR spectra of amines **3a-g** absorption bands were detected characteristic of 1,2,3- and 1,2,3,5-substituted benzene rings at 700 and 760, and at 840 cm<sup>-1</sup> respectively, for the aromatic ring at 1550, 1600, and 3050, and for an ether grouping at 1050 and 1200 cm<sup>-1</sup>. The structures of amines **3a-g** were confirmed by <sup>1</sup>H NMR spectroscopy, and the structures of **3f,g** also by the <sup>13</sup>C NMR method (Table 3). The spectra of the compounds indicated were in agreement with the proposed structures.

## EXPERIMENTAL

The IR spectra were taken on a UR 20 spectrometer in KBr disks or in nujol mulls. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on a Varian Mercury 300 spectrometer (300 MHz for proton and 75 MHz for carbon nuclei) at 30°C (303 K). Internal standard was TMS.

The initial dialkyl(3-alkenylpropargyl)amines were synthesized by the Mannich reaction [3]. Salts **1a-g** were obtained in quantitative yield in acetonitrile by the interaction of dialkyl(3-alkenylpropargyl)amines **4a-g** with chromatographically pure 1-chloro-4-hydroxy-2-butyne obtained by the procedure of [4].

The characteristics of amines **3a-g** and the data of <sup>1</sup>H and <sup>13</sup>C NMR spectra are given in Tables 1 and 3. The characteristics of amines **4c,d,f** and of salts **1c,d,f,g** are given in Table 2.

Cyclization of Salts 1a-g and the Direct Aqueous Alkaline Decomposition of Salts 2a-g (General Method). A 2N KOH solution (1.8 ml) was added to a solution of the initial salt 1a-g (18 mmol) (molar ratio salt : base = 5 : 1). The reaction mixture was heated at 50-55°C for 5-10 min, then self-heating of the reaction mixture occurred to 75-85°C. The reaction mixture was extracted with ether (2 × 30 ml) to remove products of side reactions. In each case amines **3a-g** (5-10%) were detected in the ether extract by titration, the picrates of which gave no depression of melting point with picrates of amines **3a-g** obtained on aqueous alkaline decomposition of salts **2a-g**. A twofold molar quantity of potassium hydroxide dissolved in water (2-3 ml) was then added to the reaction mixture without isolating the cyclization products **2a-g**. The reaction mixture was boiled for 3-3.5 h at 85-90°C. The mixture was extracted with ether (3 × 50 ml), the ether extract was washed with water, and dried over MgSO<sub>4</sub>. After removing the ether, amines **3a-g** were obtained by vacuum distillation.

## REFERENCES

- 1. E. O. Chukhadzhyan, A. R. Gevorkyan, El. O. Chukhadzhyan, K. G. Shakhatuni, F. S. Kinoyan, and G. A. Panosyan, *Khim. Geterotsikl. Soedin.*, 34 (2004).
- 2. E. O. Chukajian, H. R. Gevorkyan, E. O. Chukhajian, K. G. Shakhatuni, H. A. Panosyan, and R. A. Tamazyan, *J. Heterocycl. Chem.*, **40**, 1059 (2003).
- 3. E. O. Chukhadzhyan, A. R. Gevorkyan, El. O. Chukhadzhyan, and K. G. Shakhatuni, *Zh. Org. Khim.*, **36**, 9 (2000).
- 4. G. Dupont, R. Dulou, and G. Lefebvre, Bull. Soc. Chem. France, 816 (1954).